Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus.
نویسندگان
چکیده
Functional evidence suggests that nitric oxide released from CA1 pyramidal cells can act as a retrograde messenger to mediate hippocampal long-term potentiation, but the failure to find neuronal nitric oxide synthase (NOS-I) in the dendritic spines of these cells has cast doubt on this suggestion. We hypothesized that NOS-I may be in spines but in a form inaccessible to antibody when using standard histological fixation procedures. Supporting this hypothesis, we found that after a weak fixation protocol shown previously to enhance staining of synaptic proteins, CA1 pyramidal cells exhibit clear immunoreactivity for NOS-I. Confocal microscopy revealed that numerous dendritic spines in the stratum radiatum contained the NR2 subunit of the NMDA receptor and the adaptor protein postsynaptic density-95, and a subset of these spines also contained NOS-I. Quantitative studies showed that only approximately 8% of synaptic puncta (identified by synaptophysin staining) were associated with NOS-I, and approximately 9% contained the beta subunit of soluble guanylyl cyclase (sGC), a major target of NO. However, the majority of NOS-I-positive synaptic puncta was associated with sGC and vice versa. Postembedding immunogold electron microscopy showed that NOS-I concentrates just inside the postsynaptic plasma membrane of asymmetric axospinous synapses in the stratum radiatum of CA1, whereas sGCbeta concentrates just inside the presynaptic membrane. Together, these findings support the possibility that NO may act as a retrograde messenger to help mediate homosynaptic plasticity in a subpopulation of synapses in the stratum radiatum of CA1.
منابع مشابه
Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons.
The synaptic long-term potentiation between primary afferent C-fibers and spinal lamina I projection neurons is a cellular model for hyperalgesia [Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237-1240]. In lamina I neurons with a projection to the periaqueductal gray, this long-term potenti...
متن کاملFiring of hippocampal neurogliaform cells induces suppression of synaptic inhibition.
Little is known about how neuron firing recorded in vivo retrogradely influences synaptic strength. We injected the firing of a rat hippocampal neurogliaform cell (NGFC), a widely expressed GABAergic neuron type, detected in vivo during theta rhythm, into NGFCs of rat or neuronal nitric oxide synthase (nNOS)-Cre-tdTomato mouse recorded in vitro. We found that the "in vivo firing pattern" produc...
متن کاملImmuno - electron microscopic localization of the a and b - subunits 1 1 of soluble guanylyl cyclase in the guinea pig organ of Corti
Guanylyl cyclases (GC) catalyze the formation of the intracellular signal molecule cyclic GMP from GTP. For some years it has been known that the heme-containing soluble guanylyl cyclase (sGC) is stimulated by NO and NO-containing compounds. The sGC enzyme consists of two subunits (a and b ). In the present study, the a and b -subunits were identified in the guinea pig cochlea at the electron 1...
متن کاملSelective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.
Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...
متن کاملHippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling.
Nitric oxide (NO) plays an important role in synaptic plasticity as a retrograde messenger at glutamatergic synapses. Here we describe that, in hippocampal pyramidal cells, neuronal nitric oxide synthase (nNOS) is also associated with the postsynaptic active zones of GABAergic symmetrical synapses terminating on their somata, dendrites, and axon initial segments in both mice and rats. The NO re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 20 شماره
صفحات -
تاریخ انتشار 2002